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While analysing the Arrhenius equation the values of coefficients ¢ and b
in the compensation equation have been theoretically proved, and condi-
tions for k and T were determined, which enabled the coefficient b to be
treated as constant.

In papers by Pysiak [1,2] and in many others (see ref. 3 and references
quoted therein) dealing with the thermal dissociation of solids, it has been
found experimentally that coefficients of the compensation equation

In A=a-+ bE (1)

where 4 ‘and E (parameters of the Arrhenius equation) mostly take the
values a=0and o<b < 1.

In this paper we show that values of coefficients a and b can be proved
theoretically while analysing the Arrhenius equation

k=A e E/RT (2)

One can conclude on the basis of the character of the parameters
occurring in eqn. (2) that usuvally 4, E, T, R > 0, so we can obtain at once
the simple

Lemma 1. Let us assume that k= Ade £/RT and 4, E, T, R> 0, then
k> 0.

Proof. It results from the properties of the exponential function that we
always have e £/RT > (, so Ae £/RT > (, since 4 > 0. Thus k > 0, which
was to be proved.

Lemma 2. Let us assume that parameters A and k are connected with the
Arrhenius equation (2) such that 4 > k.

Proof. Since E/RT > 0, then e £/RT > % = 1, since the exponential func-
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tion rises. Therefore Ae " £/RT > 4, and A > Ae™£/RT = k, which was to be

proved.

Lemma 3. Let us assume that In 4 = bE, then in such a case
O<b<lifandonlyif 1 <A <e® (3)
b, < b <b, if and only if e”* < 4 < e~ (4)

Proof. We can show the correctness of eqn. (4) since eqn. (3) is a special
case: it is enough to substitute values for b, =0 and b, =1 in eqn. (4) in
order to obtain eqn. (3).

Let us assume that b, < b <b,. Then we have b, E < bE < b, E. From the
assumption that In 4 = bE we obtain b, E <In 4 <b,E and e < <
e?2£ and on basis of the definition of the logarithmic function we can obtain
g4 = 4. That is e”£ < 4 < e®£, which was to be proved.

Lemma 4. k= Ae E/RT & A/k = e*/RT » In(A/k) = E/RT & E =
RT In(A/k)

Proof. 1t can be proved immediately by means of simple mathematical
transformations.

Now we can express the theorem.

Theorem 1. Let us assume that In 4 =bFE and k> 1; then we obtain
0<b<l

Proof. From Lemma 2 it is known that 4 > k, so we obtain In 4 > In £,
because the logarithmic function rises and k£ > 1 was assumed.

Hence, if In & > In 1 =0, then in this expression

O0<Ink<In A,thus1 <(In A/In k) and 1/[1 — (In 4/In k)] <O.

Simultaneously, from Lemma 3 it is known that in order to obtain
b€ (0, 1) it is enough that we can obtain both 1 <4 <ef and then E =
RTIn(A/k) =In(A/k)®Ton the basis of Lemma 4.

Hence if A <efeo 4 <elA/MRTI=[(4/k)/RT]<=1In A <RT In(4/
k), and since 1 <k <A (on the basis of Lemma 2), then 1 <(A/k) and
0=1In1<In(A4/k). Therefore on the basis of the inequality In A <RT
In( A /k) one can obtain the inequality [In 4/In(A4/k)] < RT, since In(A/
k) > 0. Taking into account the fact that [In 4/In(A/k)]=[In A/(In 4 —
In k)]=1/[1 —(In k/In A)] <0, then the inequality In 4/In(A/k) < RT
always occurs (since 7> 0), and 1 <4 <e¥; therefore (on the basis of
Lemma 3) 0 < b < 1, which was to be proved.

Hence if we assume that k > 1, then on basis of the Arrhenius equation
(2) we calculate that coefficient b in the compensation equation (1) falls
between 0 and 1 which, of course, does not mean that it is stable [4].

Therefore the considerations we present here do not explain the problem
of stability of the coefficient b, they only allow us to evaluate initially the
values of coefficients ¢ and b in eqn. (1).

Similar considerations can be used to support Theorem 1, and then we
find that
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Theorem 2. Let us assume that In 4 =bE and RT > 1 (i.e. T>1/R), so
then we have 0 <b < 1.

Proof. If k> 1, then the thesis results directly from egn. (1). So we
assume that 0 < k <1 (there is no other possibility: cf. Lemma 1). Because
k= Ae E/RT therefore Ae 5/RT <1 and A <ef/RT. We also know that
RT > 1, therefore 1 /RT < 1, then 0 < A < e£/RT which means (on the basis
of Lemma 4) that we have 0 < b < 1, which was to be proved.

The considerations presented here may be continued in order to de-
termine which conditions parameters k and T should meet in order to give
b, < b <b,, where b, and b, represent any real numbers. We intend to find
conditions for parameters k and 7, so that if they are met one could treat
the coefficient b as constant.
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